1. 核心对象模型 (Include/object.h)
1.1 基础对象结构 PyObject
// Include/object.h
typedef struct _object {
_PyObject_HEAD_EXTRA // 调试模式下的额外字段
Py_ssize_t ob_refcnt; // 引用计数
PyTypeObject *ob_type; // 类型对象指针
} PyObject;
// 变长对象 PyVarObject是Python中用于表示可变长度对象(如列表、元组、字符串等)的基础结构。它扩展了基本的PyObject,增加了一个表示对象中元素数量的字段(ob_size)
typedef struct {
PyObject ob_base; // 基础对象
Py_ssize_t ob_size; // 对象大小
} PyVarObject;
源码位置: Include/object.h:106-120
内存布局:
PyObject: ┌─────────────┬──────────────┬─────────────┐ │ ob_refcnt │ ob_type │ data... │ │ 8 bytes │ 8 bytes │ variable │ └─────────────┴──────────────┴─────────────┘
1.2 类型对象 PyTypeObject
// Include/cpython/object.h
typedef struct _typeobject {
PyVarObject ob_base;
const char *tp_name; // 类型名称
Py_ssize_t tp_basicsize; // 基本大小
Py_ssize_t tp_itemsize; // 元素大小
// 析构和打印
destructor tp_dealloc;
Py_ssize_t tp_vectorcall_offset;
// 标准方法
getattrfunc tp_getattr;
setattrfunc tp_setattr;
PyAsyncMethods *tp_as_async;
reprfunc tp_repr;
// 数值方法、序列方法、映射方法
PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;
// 更多字段...
} PyTypeObject;
2. 整数对象内存模型 (Objects/longobject.c)
2.1 长整数结构
// Include/cpython/longintrepr.h
struct _longobject {
PyVarObject ob_base;
digit ob_digit[1]; // 数字位数组
};
typedef struct _longobject PyLongObject;
// digit 是 30 位或 15 位的无符号整数
#if PYLONG_BITS_IN_DIGIT == 30
typedef uint32_t digit;
typedef int32_t sdigit;
typedef uint64_t twodigits;
#elif PYLONG_BITS_IN_DIGIT == 15
typedef unsigned short digit;
typedef short sdigit;
typedef unsigned long twodigits;
#endif
小整数缓存机制:
// Objects/longobject.c #define IS_SMALL_INT(ival) (-_PY_NSMALLNEGINTS <= (ival) && (ival) < _PY_NSMALLPOSINTS) #define IS_SMALL_UINT(ival) ((ival) < _PY_NSMALLPOSINTS)
// Objects/longobject.c
#define NSMALLPOSINTS 257
#define NSMALLNEGINTS 5
// 小整数对象池 [-5, 256]
static PyLongObject small_ints[NSMALLNEGINTS + NSMALLPOSINTS];
PyObject *
PyLong_FromLong(long ival)
{
// 使用小整数缓存
if (IS_SMALL_INT(ival)) {
return get_small_int((sdigit)ival);
}
// 创建新的长整数对象
return PyLong_FromLongLong(ival);
}
2.2 内存布局示例
小整数 (42): ┌───────────┬──────────┬────────┬──────────┐ │ ob_refcnt │ ob_type │ob_size │ ob_digit │ │ ? │ &Long │ 1 │ 42 │ └───────────┴──────────┴────────┴──────────┘ 大整数 (2^100): ┌───────────┬──────────┬────────┬─────────────────────┐ │ ob_refcnt │ ob_type │ob_size │ ob_digit[] │ │ 1 │ &Long │ 4 │ [低位...高位] │ └───────────┴──────────┴────────┴─────────────────────┘
3. 字符串对象内存模型 (Objects/unicodeobject.c)
3.1 Unicode 对象结构
// Include/cpython/unicodeobject.h
typedef struct {
PyObject_HEAD
Py_ssize_t length; // 字符串长度
Py_hash_t hash; // 哈希值缓存
struct {
unsigned int interned:2; // 字符串驻留状态
unsigned int kind:3; // 字符串类型
unsigned int compact:1; // 是否紧凑存储
unsigned int ascii:1; // 是否纯ASCII
unsigned int ready:1; // 是否就绪
unsigned int :24;
} state;
wchar_t *wstr; // 宽字符表示(可选)
} PyASCIIObject;
// 紧凑 Unicode 对象
typedef struct {
PyASCIIObject _base;
Py_ssize_t utf8_length; // UTF-8 长度
char *utf8; // UTF-8 缓存
Py_ssize_t wstr_length; // 宽字符长度
} PyCompactUnicodeObject;
3.2 字符串驻留机制
// Objects/unicodeobject.c
static PyObject *interned = NULL; // 驻留字符串字典
void
PyUnicode_InternInPlace(PyObject **p)
{
PyObject *s = *p;
if (PyUnicode_READY(s) == -1) {
return;
}
// 检查是否已驻留
if (PyUnicode_CHECK_INTERNED(s)) {
return;
}
// 添加到驻留字典
PyObject *t = PyDict_SetDefault(interned, s, s);
if (t != s) {
Py_SETREF(*p, Py_NewRef(t));
}
PyUnicode_CHECK_INTERNED(s) = SSTATE_INTERNED_MORTAL;
}
4. 列表对象内存模型 (Objects/listobject.c)
4.1 列表结构
// Include/cpython/listobject.h
typedef struct {
PyVarObject ob_base;
PyObject **ob_item; // 指向元素数组的指针
Py_ssize_t allocated; // 已分配的空间大小
} PyListObject;
// Objects/listobject.c
static int
list_resize(PyListObject *self, Py_ssize_t newsize)
{
PyObject **items;
size_t new_allocated, num_allocated_bytes;
Py_ssize_t allocated = self->allocated;
// 扩容策略: newsize + (newsize >> 3) + (newsize < 9 ? 3 : 6)
new_allocated = ((size_t)newsize + (newsize >> 3) + 6) & ~(size_t)3;
if (newsize == 0) {
PyMem_FREE(self->ob_item);
self->ob_item = NULL;
self->allocated = 0;
return 0;
}
// 重新分配内存
items = (PyObject **)PyMem_Realloc(self->ob_item,
new_allocated * sizeof(PyObject *));
if (items == NULL) {
PyErr_NoMemory();
return -1;
}
self->ob_item = items;
self->allocated = new_allocated;
return 0;
}
4.3 内存布局
PyObject: ┌─────────────┬──────────────┬─────────────┐ │ ob_refcnt │ ob_type │ data... │ │ 8 bytes │ 8 bytes │ variable │ └─────────────┴──────────────┴─────────────┘
1.2 类型对象 PyTypeObject
// Include/cpython/object.h
typedef struct _typeobject {
PyVarObject ob_base;
const char *tp_name; // 类型名称
Py_ssize_t tp_basicsize; // 基本大小
Py_ssize_t tp_itemsize; // 元素大小
// 析构和打印
destructor tp_dealloc;
Py_ssize_t tp_vectorcall_offset;
// 标准方法
getattrfunc tp_getattr;
setattrfunc tp_setattr;
PyAsyncMethods *tp_as_async;
reprfunc tp_repr;
// 数值方法、序列方法、映射方法
PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;
// 更多字段...
} PyTypeObject;
2. 整数对象内存模型 (Objects/longobject.c)
2.1 长整数结构
// Include/cpython/longintrepr.h
struct _longobject {
PyVarObject ob_base;
digit ob_digit[1]; // 数字位数组
};
typedef struct _longobject PyLongObject;
// digit 是 30 位或 15 位的无符号整数
#if PYLONG_BITS_IN_DIGIT == 30
typedef uint32_t digit;
typedef int32_t sdigit;
typedef uint64_t twodigits;
#elif PYLONG_BITS_IN_DIGIT == 15
typedef unsigned short digit;
typedef short sdigit;
typedef unsigned long twodigits;
#endif
小整数缓存机制:
// Objects/longobject.c #define IS_SMALL_INT(ival) (-_PY_NSMALLNEGINTS <= (ival) && (ival) < _PY_NSMALLPOSINTS) #define IS_SMALL_UINT(ival) ((ival) < _PY_NSMALLPOSINTS)
// Objects/longobject.c
#define NSMALLPOSINTS 257
#define NSMALLNEGINTS 5
// 小整数对象池 [-5, 256]
static PyLongObject small_ints[NSMALLNEGINTS + NSMALLPOSINTS];
PyObject *
PyLong_FromLong(long ival)
{
// 使用小整数缓存
if (IS_SMALL_INT(ival)) {
return get_small_int((sdigit)ival);
}
// 创建新的长整数对象
return PyLong_FromLongLong(ival);
}
2.2 内存布局示例
小整数 (42): ┌───────────┬──────────┬────────┬──────────┐ │ ob_refcnt │ ob_type │ob_size │ ob_digit │ │ ? │ &Long │ 1 │ 42 │ └───────────┴──────────┴────────┴──────────┘ 大整数 (2^100): ┌───────────┬──────────┬────────┬─────────────────────┐ │ ob_refcnt │ ob_type │ob_size │ ob_digit[] │ │ 1 │ &Long │ 4 │ [低位...高位] │ └───────────┴──────────┴────────┴─────────────────────┘
3. 字符串对象内存模型 (Objects/unicodeobject.c)
3.1 Unicode 对象结构
// Include/cpython/unicodeobject.h
typedef struct {
PyObject_HEAD
Py_ssize_t length; // 字符串长度
Py_hash_t hash; // 哈希值缓存
struct {
unsigned int interned:2; // 字符串驻留状态
unsigned int kind:3; // 字符串类型
unsigned int compact:1; // 是否紧凑存储
unsigned int ascii:1; // 是否纯ASCII
unsigned int ready:1; // 是否就绪
unsigned int :24;
} state;
wchar_t *wstr; // 宽字符表示(可选)
} PyASCIIObject;
// 紧凑 Unicode 对象
typedef struct {
PyASCIIObject _base;
Py_ssize_t utf8_length; // UTF-8 长度
char *utf8; // UTF-8 缓存
Py_ssize_t wstr_length; // 宽字符长度
} PyCompactUnicodeObject;
3.2 字符串驻留机制
// Objects/unicodeobject.c
static PyObject *interned = NULL; // 驻留字符串字典
void
PyUnicode_InternInPlace(PyObject **p)
{
PyObject *s = *p;
if (PyUnicode_READY(s) == -1) {
return;
}
// 检查是否已驻留
if (PyUnicode_CHECK_INTERNED(s)) {
return;
}
// 添加到驻留字典
PyObject *t = PyDict_SetDefault(interned, s, s);
if (t != s) {
Py_SETREF(*p, Py_NewRef(t));
}
PyUnicode_CHECK_INTERNED(s) = SSTATE_INTERNED_MORTAL;
}
4. 列表对象内存模型 (Objects/listobject.c)
4.1 列表结构
// Include/cpython/listobject.h
typedef struct {
PyVarObject ob_base;
PyObject **ob_item; // 指向元素数组的指针
Py_ssize_t allocated; // 已分配的空间大小
} PyListObject;
4.2 动态扩容机制
// Objects/listobject.c
static int
list_resize(PyListObject *self, Py_ssize_t newsize)
{
PyObject **items;
size_t new_allocated, num_allocated_bytes;
Py_ssize_t allocated = self->allocated;
// 扩容策略: newsize + (newsize >> 3) + (newsize < 9 ? 3 : 6)
new_allocated = ((size_t)newsize + (newsize >> 3) + 6) & ~(size_t)3;
if (newsize == 0) {
PyMem_FREE(self->ob_item);
self->ob_item = NULL;
self->allocated = 0;
return 0;
}
// 重新分配内存
items = (PyObject **)PyMem_Realloc(self->ob_item,
new_allocated * sizeof(PyObject *));
if (items == NULL) {
PyErr_NoMemory();
return -1;
}
self->ob_item = items;
self->allocated = new_allocated;
return 0;
}
4.3 内存布局
空列表:
┌───────────┬──────────┬────────┬──────────┬───────────┐
│ ob_refcnt │ ob_type │ob_size │ ob_item │ allocated │
│ 1 │ &List │ 0 │ NULL │ 0 │
└───────────┴──────────┴────────┴──────────┴───────────┘
包含元素的列表 [1, 2, 3]:
┌───────────┬──────────┬────────┬──────────┬───────────┐
│ ob_refcnt │ ob_type │ob_size │ ob_item │ allocated │
│ 1 │ &List │ 3 │ ptr │ 4 │
└───────────┴──────────┴────────┴──────────┴───────────┘
│
▼
┌──────────────────┐
│ PyObject *[4] │
│ [0]: &int(1) │
│ [1]: &int(2) │
│ [2]: &int(3) │
│ [3]: NULL │
└──────────────────┘
5. 字典对象内存模型 (Objects/dictobject.c)
5.1 字典结构 (紧凑表示)
// Objects/dictobject.c
struct _dictkeysobject {
Py_ssize_t dk_refcnt; // 键对象引用计数
Py_ssize_t dk_size; // 哈希表大小
dict_lookup_func dk_lookup; // 查找函数
Py_ssize_t dk_usable; // 可用槽位数
Py_ssize_t dk_nentries; // 已使用条目数
char dk_indices[]; // 索引数组 + 条目数组
};
typedef struct {
PyObject_HEAD
Py_ssize_t ma_used; // 已使用条目数
uint64_t ma_version_tag; // 版本标签
PyDictKeysObject *ma_keys; // 键对象
PyObject **ma_values; // 值数组(分离表示)
} PyDictObject;
5.2 哈希冲突解决
// Objects/dictobject.c
static Py_ssize_t
lookdict(PyDictObject *mp, PyObject *key, Py_hash_t hash, PyObject **value_addr)
{
PyDictKeysObject *dk = mp->ma_keys;
size_t mask = DK_MASK(dk);
size_t perturb = hash;
size_t i = (size_t)hash & mask;
// 开放寻址法解决冲突
for (;;) {
Py_ssize_t ix = dk_get_index(dk, i);
if (ix == DKIX_EMPTY) {
*value_addr = NULL;
return ix;
}
PyDictKeyEntry *ep = &DK_ENTRIES(dk)[ix];
assert(ep->me_key != NULL);
if (ep->me_key == key) {
*value_addr = ep->me_value;
return ix;
}
// 扰动探测
perturb >>= PERTURB_SHIFT;
i = (i*5 + 1 + perturb) & mask;
}
}
6. 内存管理机制
6.1 对象分配器 (Objects/obmalloc.c)
// Objects/obmalloc.c
// 内存池结构
struct pool_header {
union { block *_padding;
uint count; } ref; // 引用计数
block *freeblock; // 空闲块链表
struct pool_header *nextpool; // 下一个池
struct pool_header *prevpool; // 前一个池
uint arenaindex; // 竞技场索引
uint szidx; // 大小索引
uint nextoffset; // 下一个偏移
uint maxnextoffset; // 最大偏移
};
// PyObject_Malloc 实现
void *
PyObject_Malloc(size_t size)
{
if (size > SMALL_REQUEST_THRESHOLD) {
return PyMem_RawMalloc(size);
}
// 使用对象分配器
uint pool_idx = size_to_pool_idx(size);
pool_header *pool = usedpools[pool_idx];
if (pool != NULL) {
// 从现有池分配
block *bp = pool->freeblock;
if (bp != NULL) {
pool->freeblock = *(block **)bp;
return (void *)bp;
}
}
// 创建新池或使用系统分配器
return allocate_from_new_pool(size);
}
6.2 垃圾回收机制 (Modules/gcmodule.c)
// Modules/gcmodule.c
// GC 头结构
typedef union _gc_head {
struct {
union _gc_head *gc_next;
union _gc_head *gc_prev;
Py_ssize_t gc_refs;
} gc;
double dummy; // 对齐
} PyGC_Head;
// 垃圾回收主函数
static Py_ssize_t
gc_collect_main(PyThreadState *tstate, int generation, Py_ssize_t *n_collected, Py_ssize_t *n_uncollectable, int nofail)
{
Py_ssize_t m = 0; // 收集的对象数
Py_ssize_t n = 0; // 无法收集的对象数
PyGC_Head *young; // 年轻代
PyGC_Head *old; // 老年代
PyGC_Head unreachable; // 不可达对象
PyGC_Head finalizers; // 终结器对象
// 标记-清扫算法
// 1. 将引用计数复制到gc_refs
update_refs(young);
// 2. 减少内部引用
subtract_refs(young);
// 3. 标记可达对象
move_unreachable(young, &unreachable);
// 4. 处理终结器
move_legacy_finalizers(&unreachable, &finalizers);
// 5. 删除不可达对象
delete_garbage(tstate, &unreachable, generation);
return n+m;
}
// Modules/gcmodule.c 详细展开
static Py_ssize_t
gc_collect_main(PyThreadState *tstate, int generation,
Py_ssize_t *n_collected, Py_ssize_t *n_uncollectable,
int nofail)
{
int i;
Py_ssize_t m = 0; /* # objects collected */
Py_ssize_t n = 0; /* # unreachable objects that couldn't be collected */
PyGC_Head *young; /* the generation we are examining */
PyGC_Head *old; /* next older generation */
PyGC_Head unreachable; /* non-problematic unreachable trash */
PyGC_Head finalizers; /* objects with, & reachable from, __del__ */
PyGC_Head *gc;
_PyTime_t t1 = 0; /* initialize to prevent a compiler warning */
GCState *gcstate = &tstate->interp->gc;
// gc_collect_main() must not be called before _PyGC_Init
// or after _PyGC_Fini()
assert(gcstate->garbage != NULL);
assert(!_PyErr_Occurred(tstate));
if (gcstate->debug & DEBUG_STATS) {
PySys_WriteStderr("gc: collecting generation %d...\n", generation);
show_stats_each_generations(gcstate);
t1 = _PyTime_GetPerfCounter();
}
if (PyDTrace_GC_START_ENABLED())
PyDTrace_GC_START(generation);
**//重置当前代及更年轻代的计数器,增加下一代的计数器,之所以重制当前代的计数器,是为了完成垃圾回收后,当前的计数器还处于较高的峰值,再次触发回收,给下一代增加1 ,这个很好理解,为了出发老年代的对象**
/* update collection and allocation counters */
if (generation+1 < NUM_GENERATIONS)
gcstate->generations[generation+1].count += 1;
for (i = 0; i <= generation; i++)
gcstate->generations[i].count = 0;
**//这是分代收集的关键:收集第N代时,会同时收集所有更年轻的代(0到N-1代)。**
/* merge younger generations with one we are currently collecting */
for (i = 0; i < generation; i++) {
gc_list_merge(GEN_HEAD(gcstate, i), GEN_HEAD(gcstate, generation));
}
**//young: 指向当前正在收集的代
//old: 指向下一个更老的代(或在特殊情况下指向当前代)**
/* handy references */
young = GEN_HEAD(gcstate, generation);
if (generation < NUM_GENERATIONS-1)
old = GEN_HEAD(gcstate, generation+1);
else
old = young;
validate_list(old, collecting_clear_unreachable_clear);
**//将不可达的对象封装到unreachable链表里,可达对象保留在young链表中,分离不可达对象(move_unreachable): 将`gc_refs`为0的对象移到不可达链表,大于0的对象留在可达链表。**
deduce_unreachable(young, &unreachable);
untrack_tuples(young);
/* Move reachable objects to next generation. */
if (young != old) {
if (generation == NUM_GENERATIONS - 2) {
gcstate->long_lived_pending += gc_list_size(young);
}
gc_list_merge(young, old);
}
else {
/* We only un-track dicts in full collections, to avoid quadratic
dict build-up. See issue #14775. */
untrack_dicts(young);
gcstate->long_lived_pending = 0;
gcstate->long_lived_total = gc_list_size(young);
}
**//创建一个空的链表用于存放有终结器的对象
//这个列表将包含所有不能立即删除的"问题"对象**
/* All objects in unreachable are trash, but objects reachable from
* legacy finalizers (e.g. tp_del) can't safely be deleted.
*/
gc_list_init(&finalizers);
// NEXT_MASK_UNREACHABLE is cleared here.
// After move_legacy_finalizers(), unreachable is normal list.
// 从unreachable列表中找出所有有遗留终结器的对象,移动到finalizers列表
//具体过程:
// 遍历unreachable列表中的每个对象
// 检查对象是否有__del__方法或tp_del函数
// 如果有,将该对象从unreachable移动到finalizers
// 同时清除对象的NEXT_MASK_UNREACHABLE标记
move_legacy_finalizers(&unreachable, &finalizers);
**//找出从终结器对象可达的其他对象,也移动到finalizers列表**
/* finalizers contains the unreachable objects with a legacy finalizer;
* unreachable objects reachable *from* those are also uncollectable,
* and we move those into the finalizers list too.
*/
move_legacy_finalizer_reachable(&finalizers);
validate_list(&finalizers, collecting_clear_unreachable_clear);
validate_list(&unreachable, collecting_set_unreachable_clear);
/* Print debugging information. */
if (gcstate->debug & DEBUG_COLLECTABLE) {
for (gc = GC_NEXT(&unreachable); gc != &unreachable; gc = GC_NEXT(gc)) {
debug_cycle("collectable", FROM_GC(gc));
}
}
**//清理弱引用并调用相关回调函数。**
/* Clear weakrefs and invoke callbacks as necessary. */
m += handle_weakrefs(&unreachable, old);
validate_list(old, collecting_clear_unreachable_clear);
validate_list(&unreachable, collecting_set_unreachable_clear);
**//调用对象的tp_finalize方法**
/* Call tp_finalize on objects which have one. */
finalize_garbage(tstate, &unreachable);
/* Handle any objects that may have resurrected after the call
* to 'finalize_garbage' and continue the collection with the
* objects that are still unreachable */
PyGC_Head final_unreachable;
handle_resurrected_objects(&unreachable, &final_unreachable, old);
/* Call tp_clear on objects in the final_unreachable set. This will cause
* the reference cycles to be broken. It may also cause some objects
* in finalizers to be freed.
*/
m += gc_list_size(&final_unreachable);
delete_garbage(tstate, gcstate, &final_unreachable, old);
/* Collect statistics on uncollectable objects found and print
* debugging information. */
for (gc = GC_NEXT(&finalizers); gc != &finalizers; gc = GC_NEXT(gc)) {
n++;
if (gcstate->debug & DEBUG_UNCOLLECTABLE)
debug_cycle("uncollectable", FROM_GC(gc));
}
if (gcstate->debug & DEBUG_STATS) {
double d = _PyTime_AsSecondsDouble(_PyTime_GetPerfCounter() - t1);
PySys_WriteStderr(
"gc: done, %zd unreachable, %zd uncollectable, %.4fs elapsed\n",
n+m, n, d);
}
/* Append instances in the uncollectable set to a Python
* reachable list of garbage. The programmer has to deal with
* this if they insist on creating this type of structure.
*/
handle_legacy_finalizers(tstate, gcstate, &finalizers, old);
validate_list(old, collecting_clear_unreachable_clear);
/* Clear free list only during the collection of the highest
* generation */
if (generation == NUM_GENERATIONS-1) {
clear_freelists(tstate->interp);
}
if (_PyErr_Occurred(tstate)) {
if (nofail) {
_PyErr_Clear(tstate);
}
else {
_PyErr_WriteUnraisableMsg("in garbage collection", NULL);
}
}
/* Update stats */
if (n_collected) {
*n_collected = m;
}
if (n_uncollectable) {
*n_uncollectable = n;
}
struct gc_generation_stats *stats = &gcstate->generation_stats[generation];
stats->collections++;
stats->collected += m;
stats->uncollectable += n;
if (PyDTrace_GC_DONE_ENABLED()) {
PyDTrace_GC_DONE(n + m);
}
assert(!_PyErr_Occurred(tstate));
return n + m;
}
move_legacy_finalizers(&unreachable, &finalizers)作用
功能:找出从终结器对象可达的其他对象,也移动到finalizers列表
为什么需要这步?
Container:
def __del__(self):
# 可能访问self.data
print(f"删除容器: {self.data}")
class Data:
pass
# 创建循环引用
container = Container()
data = Data()
container.data = data
data.container = container
在这个例子中:
Container有__del__方法,会被放入finalizers
Data对象虽然没有终结器,但从Container可达
如果先删除Data,Container.__del__执行时会出错
因此Data也必须被标记为不可收集
执行过程:
从finalizers中的每个对象开始
通过BFS/DFS遍历所有可达对象
将这些可达对象也移动到finalizers列表
确保终结器执行时不会访问到已删除的对象
6.2.2. finalize_garbage方法
finalize_garbage(PyThreadState *tstate, PyGC_Head *collectable)
{
destructor finalize;
PyGC_Head seen;
/* While we're going through the loop, `finalize(op)` may cause op, or
* other objects, to be reclaimed via refcounts falling to zero. So
* there's little we can rely on about the structure of the input
* `collectable` list across iterations. For safety, we always take the
* first object in that list and move it to a temporary `seen` list.
* If objects vanish from the `collectable` and `seen` lists we don't
* care.
*/
gc_list_init(&seen);
while (!gc_list_is_empty(collectable)) {
PyGC_Head *gc = GC_NEXT(collectable);
PyObject *op = FROM_GC(gc);
gc_list_move(gc, &seen);
if (!_PyGCHead_FINALIZED(gc) &&
(finalize = Py_TYPE(op)->tp_finalize) != NULL) {
_PyGCHead_SET_FINALIZED(gc);
Py_INCREF(op);
finalize(op);
assert(!_PyErr_Occurred(tstate));
Py_DECREF(op);
}
}
gc_list_merge(&seen, collectable);
}
(Objects/typeobject.c)
FLSLOT(__init__, tp_init, slot_tp_init, (wrapperfunc)(void(*)(void))wrap_init,
"__init__($self, /, *args, **kwargs)\n--\n\n"
"Initialize self. See help(type(self)) for accurate signature.",
PyWrapperFlag_KEYWORDS),
TPSLOT(__new__, tp_new, slot_tp_new, NULL,
"__new__(type, /, *args, **kwargs)\n--\n\n"
"Create and return new object. See help(type) for accurate signature."),
**TPSLOT(__del__, tp_finalize, slot_tp_finalize, (wrapperfunc)wrap_del, ""),**
BUFSLOT(__buffer__, bf_getbuffer, slot_bf_getbuffer, wrap_buffer,
"__buffer__($self, flags, /)\n--\n\n"
"Return a buffer object that exposes the underlying memory of the object."),
BUFSLOT(__release_buffer__, bf_releasebuffer, slot_bf_releasebuffer, wrap_releasebuffer,
"__release_buffer__($self, buffer, /)\n--\n\n"
"Release the buffer object that exposes the underlying memory of the object."),
......
static void
slot_tp_finalize(PyObject *self)
{
int unbound;
PyObject *del, *res;
/* Save the current exception, if any. */
PyObject *exc = PyErr_GetRaisedException();
/* Execute __del__ method, if any. */
del = lookup_maybe_method(self, &_Py_ID(__del__), &unbound);
if (del != NULL) {
res = call_unbound_noarg(unbound, del, self);
if (res == NULL)
PyErr_WriteUnraisable(del);
else
Py_DECREF(res);
Py_DECREF(del);
}
/* Restore the saved exception. */
PyErr_SetRaisedException(exc);
}
// 调用del方法
lookup_maybe_method(PyObject *self, PyObject *attr, int *unbound)
{
PyObject *res = _PyType_Lookup(Py_TYPE(self), attr);
if (res == NULL) {
return NULL;
}
if (_PyType_HasFeature(Py_TYPE(res), Py_TPFLAGS_METHOD_DESCRIPTOR)) {
/* Avoid temporary PyMethodObject */
*unbound = 1;
Py_INCREF(res);
}
else {
*unbound = 0;
descrgetfunc f = Py_TYPE(res)->tp_descr_get;
if (f == NULL) {
Py_INCREF(res);
}
else {
res = f(res, self, (PyObject *)(Py_TYPE(self)));
}
}
return res;
}
(Objects/typeobject.c)
FLSLOT(__init__, tp_init, slot_tp_init, (wrapperfunc)(void(*)(void))wrap_init,
"__init__($self, /, *args, **kwargs)\n--\n\n"
"Initialize self. See help(type(self)) for accurate signature.",
PyWrapperFlag_KEYWORDS),
TPSLOT(__new__, tp_new, slot_tp_new, NULL,
"__new__(type, /, *args, **kwargs)\n--\n\n"
"Create and return new object. See help(type) for accurate signature."),
**TPSLOT(__del__, tp_finalize, slot_tp_finalize, (wrapperfunc)wrap_del, ""),**
BUFSLOT(__buffer__, bf_getbuffer, slot_bf_getbuffer, wrap_buffer,
"__buffer__($self, flags, /)\n--\n\n"
"Return a buffer object that exposes the underlying memory of the object."),
BUFSLOT(__release_buffer__, bf_releasebuffer, slot_bf_releasebuffer, wrap_releasebuffer,
"__release_buffer__($self, buffer, /)\n--\n\n"
"Release the buffer object that exposes the underlying memory of the object."),
......
static void
slot_tp_finalize(PyObject *self)
{
int unbound;
PyObject *del, *res;
/* Save the current exception, if any. */
PyObject *exc = PyErr_GetRaisedException();
/* Execute __del__ method, if any. */
del = lookup_maybe_method(self, &_Py_ID(__del__), &unbound);
if (del != NULL) {
res = call_unbound_noarg(unbound, del, self);
if (res == NULL)
PyErr_WriteUnraisable(del);
else
Py_DECREF(res);
Py_DECREF(del);
}
/* Restore the saved exception. */
PyErr_SetRaisedException(exc);
}
// 调用del方法
lookup_maybe_method(PyObject *self, PyObject *attr, int *unbound)
{
PyObject *res = _PyType_Lookup(Py_TYPE(self), attr);
if (res == NULL) {
return NULL;
}
if (_PyType_HasFeature(Py_TYPE(res), Py_TPFLAGS_METHOD_DESCRIPTOR)) {
/* Avoid temporary PyMethodObject */
*unbound = 1;
Py_INCREF(res);
}
else {
*unbound = 0;
descrgetfunc f = Py_TYPE(res)->tp_descr_get;
if (f == NULL) {
Py_INCREF(res);
}
else {
res = f(res, self, (PyObject *)(Py_TYPE(self)));
}
}
return res;
}
在 CPython 中,slotdefs 数组用于将 Python 的特殊方法(如 __getitem__、__add__ 等)映射到类型对象(PyTypeObject)的相应槽位(slots)。注册过程发生在类型创建时,具体步骤如下:
/* 伪代码:简化版类型创建流程 */
PyObject* type_new(...) {
// 1. 创建类型对象
PyTypeObject *type = ...;
// 2. 遍历 slotdefs 数组
for (PySlotDef *slot = slotdefs; slot->name; slot++) {
// 3. 在类字典中查找特殊方法
PyObject *method = _PyDict_GetItemId(class_dict, slot->name);
if (method) {
// 4. 将方法绑定到槽位
int res = _PyType_SetSlotFromSpec(type, slot, method);
// 处理错误...
}
}
}
/* Cpython里实际代码 */
/* Update the slots after assignment to a class (type) attribute. */
static int
update_slot(PyTypeObject *type, PyObject *name)
{
pytype_slotdef *ptrs[MAX_EQUIV];
pytype_slotdef *p;
pytype_slotdef **pp;
int offset;
assert(PyUnicode_CheckExact(name));
assert(PyUnicode_CHECK_INTERNED(name));
pp = ptrs;
for (p = slotdefs; p->name; p++) {
assert(PyUnicode_CheckExact(p->name_strobj));
assert(PyUnicode_CHECK_INTERNED(p->name_strobj));
assert(PyUnicode_CheckExact(name));
/* bpo-40521: Using interned strings. */
if (p->name_strobj == name) {
*pp++ = p;
}
}
*pp = NULL;
for (pp = ptrs; *pp; pp++) {
p = *pp;
offset = p->offset;
while (p > slotdefs && (p-1)->offset == offset)
--p;
*pp = p;
}
if (ptrs[0] == NULL)
return 0; /* Not an attribute that affects any slots */
return update_subclasses(type, name,
update_slots_callback, (void *)ptrs);
}
-
-
验证方法签名
-
使用包装函数 将 Python 方法转为 C 可调用形式
-
将函数指针赋给类型槽位(如
type->tp_as_sequence->sq_item)
-
-
包装函数的作用(如
wrap_binaryfunc)
static PyObject* wrap_binaryfunc(PyObject *self, PyObject *args) {
// 解包参数,调用用户定义的 __getitem__ 等
}
slotdefs 数组在类型创建阶段自动完成特殊方法到槽位的注册:
-
遍历
slotdefs匹配类字典中的方法 -
使用包装函数桥接 Python/C 接口
-
填充类型对象的槽位函数指针
-
为未定义的方法设置默认实现
这一机制使得 Python 层面的特殊方法能直接影响对象在解释器中的底层行为,是 CPython 实现面向对象特性的核心机制。
update_refs(PyGC_Head *containers)
{
PyGC_Head *next;
PyGC_Head *gc = GC_NEXT(containers);
while (gc != containers) {
next = GC_NEXT(gc);
/* Move any object that might have become immortal to the
* permanent generation as the reference count is not accurately
* reflecting the actual number of live references to this object
*/
if (_Py_IsImmortal(FROM_GC(gc))) {
gc_list_move(gc, &get_gc_state()->permanent_generation.head);
gc = next;
continue;
}
gc_reset_refs(gc, Py_REFCNT(FROM_GC(gc)));
/* Python's cyclic gc should never see an incoming refcount
* of 0: if something decref'ed to 0, it should have been
* deallocated immediately at that time.
* Possible cause (if the assert triggers): a tp_dealloc
* routine left a gc-aware object tracked during its teardown
* phase, and did something-- or allowed something to happen --
* that called back into Python. gc can trigger then, and may
* see the still-tracked dying object. Before this assert
* was added, such mistakes went on to allow gc to try to
* delete the object again. In a debug build, that caused
* a mysterious segfault, when _Py_ForgetReference tried
* to remove the object from the doubly-linked list of all
* objects a second time. In a release build, an actual
* double deallocation occurred, which leads to corruption
* of the allocator's internal bookkeeping pointers. That's
* so serious that maybe this should be a release-build
* check instead of an assert?
*/
_PyObject_ASSERT(FROM_GC(gc), gc_get_refs(gc) != 0);
gc = next;
}
}
将每个对象的 gc_refs 初始化为其 ob_refcnt(原始引用计数)。ob_refcnt 包含了来自 所有来源 的引用,包括:
栈上的变量(函数局部变量)
全局/静态变量
其他代(非当前回收代)的对象
非容器对象(如整数、字符串等)
这些来源共同构成了 GC 的根。
subtract_refs(base):
遍历当前代(base 链表)的对象,对每个对象引用的 其他同代对象,减少其 gc_refs。这相当于减去了 同代对象间的内部引用。
结果:
若对象最终 gc_refs > 0:表示存在 来自根(外部)的引用。
若 gc_refs = 0:对象仅被同代对象引用(形成孤岛),判定为不可达。
-
GC 的根roots 包括:
-
栈上的变量(局部变量)
-
全局/静态变量
-
其他代的对象
-
非容器对象
-
-
这些根通过
ob_refcnt的初始值 在update_refs中间接捕获,并在subtract_refs后通过gc_refs > 0体现。显式的根扫描(如遍历栈、全局区)发生在 GC 的其他阶段(如分代回收触发前)。
7. 引用计数机制
7.1 引用计数宏定义
// Include/object.h
// 增加引用计数
static inline void _Py_INCREF(PyObject *op)
{
#ifdef Py_REF_DEBUG
_Py_RefTotal++;
#endif
op->ob_refcnt++;
}
// 减少引用计数
static inline void _Py_DECREF(PyObject *op)
{
#ifdef Py_REF_DEBUG
_Py_RefTotal--;
#endif
if (--op->ob_refcnt != 0) {
return;
}
_Py_Dealloc(op); // 引用计数为0时销毁对象
}
#define Py_INCREF(op) _Py_INCREF(_PyObject_CAST(op))
#define Py_DECREF(op) _Py_DECREF(_PyObject_CAST(op))
7.2 对象销毁机制
// Objects/object.c
void
_Py_Dealloc(PyObject *op)
{
destructor dealloc = Py_TYPE(op)->tp_dealloc;
#ifdef Py_TRACE_REFS
_Py_ForgetReference(op);
#endif
// 调用类型特定的析构函数
(*dealloc)(op);
}
8. 内存布局总结
8.1 对象内存开销
| 对象类型 | 固定开销 | 可变部分 | 总大小示例 |
|---|---|---|---|
| int (小) | 28 bytes | 0 | 28 bytes |
| int (大) | 28 bytes | 4*n bytes | 28+4n bytes |
| str (ASCII) | 49 bytes | 1*n bytes | 49+n bytes |
| str (Unicode) | 80 bytes | 4*n bytes | 80+4n bytes |
| list | 56 bytes | 8*cap bytes | 56+8*cap bytes |
| dict | 240 bytes | 24*n bytes | 240+24n bytes |
// 内存对齐宏
#define _PyObject_SIZE(typeobj) ( (typeobj)->tp_basicsize )
#define _PyObject_VAR_SIZE(typeobj, nitems) \
(size_t) \
( ( (typeobj)->tp_basicsize + \
(nitems)*(typeobj)->tp_itemsize + \
(SIZEOF_VOID_P-1) \
) & ~(SIZEOF_VOID_P-1) \
)
9 执行流程
graph TD
A[开始回收] --> B[合并年轻代]
B --> C[标记可达对象]
C --> D[分离不可达对象]
D --> E[处理终结器对象]
E --> F[处理弱引用]
F --> G[执行__del__方法]
G --> H[检查复活对象]
H --> I[回收最终不可达对象]
I --> J[处理不可回收对象]
J --> K[更新统计信息]
K --> L[结束]
沪ICP备2025124802号-1